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Abstract

Implicit samplers are algorithms for producing independent, weighted samples
from multivariate probability distributions. These are often applied in Bayesian
data assimilation algorithms. We use Laplace asymptotic expansions to analyze
two implicit samplers in the small noise regime. Our analysis suggests a sym-
metrization of the algorithms that leads to improved implicit sampling schemes
at a relatively small additional cost. Computational experiments confirm the the-
ory and show that symmetrization is effective for small noise sampling problems.
© 2015 Wiley Periodicals, Inc.

1 Introduction
Markov chain Monte Carlo (MCMC) techniques are widely used for sampling

complicated probability distributions. However, some data assimilation methods
rely on independent samples from known distributions [5, 10, 12, 26]. Weighted
direct samplers give independent samples from a proposal distribution that is not
the target distribution, and compensate for this with a random weight factor (see,
e.g., [6] and references there). The variance of the weight factor determines the
quality of the sampler [2, 10, 18].

This paper studies two weighted direct samplers that use Gaussian approxima-
tions of the probability density about the point of maximum probability. One, the
linear map method, has been proposed independently several times and has several
names in the literature; see, e.g., [8], and also [1] for a similar method. The other
is the random map method, which was proposed in [23]. The linear and random
map methods can both be viewed as examples of implicit samplers [3, 8, 9]. We
introduce a small noise parameter ", similar to that of [27, 28]; see Section 2.3 and
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formula (2.13). We analyze the performance of these algorithms in sampling gen-
eral smooth probability densities on finite-dimensional spaces in the limit " ! 0.
The methods we study use a Gaussian approximation to the target distribution,
which is valid in the small noise limit. Many data assimilation applications are in
the small noise regime.

We study a standard quality measure of weighted direct samplers. Our analysis
consists of calculating error constants, which are the coefficients of the leading
powers of " in the small noise asymptotic expansion of the quality measures. As
long as simple smoothness and nondegeneracy hypotheses are satisfied, the error
constants for the linear and random map methods differ by a factor that depends
only on the dimension. This factor converges to 1 as the dimension goes to infinity.

The form of the error constant suggests that a symmetrization may remove the
leading error term. We study symmetrized versions of the linear and random map
methods to confirm this. The error is one order smaller in ". The error constants are
not exactly proportional, but their ratio does converge to 1 as the dimension con-
verges to infinity. We present computational experiments that confirm the small
noise asymptotic calculations. The numerical experiments further demonstrate
that the symmetrized methods are more accurate in the small noise regime, and
show that the symmetrized methods may perform significantly better than the cor-
responding “simple” methods even when the noise is not so small.

This paper is organized as follows. Section 2 starts with a precise definition of
weighted sampling and the weighted samplers we study. This includes the basic
methods and our symmetrized versions of them. The small noise hypothesis, which
is only used in the analysis and not used directly by the algorithms, is defined in
Section 2.3. The error constants are defined and listed there. Section 3, which may
be skipped on first reading, presents three technical tricks that simplify the theo-
retical calculations in Sections 4 and 5. Section 4 gives the calculations needed to
find the error constants for the linear map methods; it uses only the variance lemma
from Section 3.1. The analysis of random map methods in Section 5 is more elabo-
rate and requires the Gaussian integral formula of Section 3.2. Section 6 describes
numerical experiments on two test problems that confirm the asymptotic theory in
detail; it may be read without the theoretical sections. Section 7 summarizes our
views of these results and puts them in context.

2 Algorithms, Symmetrization, and Main Results
In this section, we describe the sampling algorithms to be studied in the rest of

the paper. We introduce the small noise scaling used in the analysis in Section 2.3,
where we also state our main theoretical scaling results. The small noise assump-
tion is only used in our analysis and is not needed for formulating the algorithms.

The following notation is used throughout the paper. Let f .x/ and r.x/ be
two functions on Rd : We write f / r if f .x/ D Cr.x/ for some fixed C . For
distributions depending on ", we write f .x; "/ / r.x; "/ if there is a C" with
f .x; "/ D C"r.x; "/. For any nonnegative f with 0 <

R
f .x/dx < 1; there
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is a probability density p / f . We write X � p if X is a random variable
whose probability density is p. Suppose X � q is a random variable and w is
a nonnegative (weight) function on Rd : We say the pair .X;w.X// is a weighted
sample of a given probability density p if

Ep.u.X// D
Eq.u.X/ � w.X//

Eq.w.X//

for every bounded continuous function u. A weighted sampler of p with proposal q
is a stochastic algorithm that produces X � q / g. It is a direct sampler if succes-
sive samples are independent. The direct samplers we consider have deterministic
weight functions

(2.1) w.x/ D
f .x/

g.x/
/
p.x/

q.x/
:

We assume f and g may be evaluated, but the normalizing constants may be un-
known (as is typically the case in applications).

A perfect sampler would have a constant weight function w D C , which would
force p D q. We measure the quality of a weighted sampler by defining a “quality
measure”Q that measures the nondimensionalized deviation ofw from a constant:

(2.2) Q D R � 1 where R D
Eq.w.X/

2/

Eq.w.X//2
:

The measure Q was also used in [28], and several motivations for it are given
in [2, 4, 10, 19]. In particular, a heuristic relates a collection of N independent
weighted samples to N=R independent unweighted samples, making N=R an ef-
fective sample size. A small Q is important in recursive particle filter algorithms.
There probability densities are sampled recursively as the data are collected, and
the weights accumulate as a product of the weights at each step. Thus, the R of
the product can grow rapidly if the Q of each of the factors is not small. Both
algorithms analyzed here have the property that Q ! 0 as " ! 0I the question
that concerns us is the rate of convergence.

The methods we consider sample

p.x/ / f .x/ D e�F.x/:

We assume that F is smooth and has a single global minimum, which is nondegen-
erate. Unless otherwise stated, we also assume (without loss of generality) that the
minimum is located at x D 0 and that F.0/ D 0. We write a Taylor expansion of
F near 0 as

(2.3) F.x/ D
1

2
xTHx C C3.x/C � � � C C6.x/CO.jxj

7/;
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where H is the Hessian matrix of F at x D 0, and Ck.x/ is the homogeneous
(Taylor) polynomial of degree k

Ck.x/ D
1

kŠ

X
j˛jDk

x˛@˛xF.0/:

We assume F.x/ ! 1 as jxj ! 1 reasonably quickly. The random map sam-
plers also require that certain equations related to F have unique and well-behaved
solutions (see below).

2.1 Simple and Symmetrized Linear Map Methods
The simple linear map method uses X � � , where � is the local Gaussian

approximation that uses the first term on the right of (2.3),

�.x/ / e�x
THx=2:

Direct Gaussian sampling algorithms make this possible. Using (2.1) with f D
e�F and g D e�x

THx=2, we find that the weight function is

(2.4) w.x/ D e�F.x/Cx
THx=2:

The simple linear map Monte Carlo algorithm to estimate Ep.u.X// is:
(1) Generate N independent Gaussian samples Xk � � .
(2) Compute weights Wk D w.Xk/ using (2.4).
(3) Compute the estimatorPN

kD1 u.Xk/w.Xk/PN
kD1w.Xk/

of Ep.u.X//:
In practice, the minimizer of F will not be at 0. It is necessary to first find

x� D arg minF.x/ and evaluate H.x�/, the Hessian of F at the minimum. This
can be a time-consuming step.

As we will see below, the leading-order term in the "-expansion of Q depends
only on C3 (see equation (2.16)). This is not surprising, as the simple method is
based on the approximation F.x/ � 1

2
xTHx, and C3.x/ is the largest correction.

Since C3 is an odd function of x, one may hope that the leading error term can
be removed by a symmetrization analogous to the classical Monte Carlo trick of
antithetic variates [15,16]. We present such a method here and verify in Section 4.2
that it removes the principal error term in the small noise limit.

The symmetrized linear map method is as follows: first draw � � � as before,
and evaluate the linear map weights (2.4) for � and for �� . Note that �.�/ D
�.��/ so these weights are

wC D
f .�/

�.�/
; w� D

f .��/

�.�/
:
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Then return X D � or X D �� with probabilities

(2.5) pC D
wC

wC C w�
; p� D

w�

wC C w�
:

These probabilities can have a particle filter interpretation. Consider .�; wC/ and
.��; w�/ to form a two-element weighted ensemble. The formulas (2.5) are the
probabilities that would be used to subsample this to a one-element unweighted
ensemble [2].

To find the weight function of the symmetrized linear map method, we must
identify qs.x/, the probability density ofX . There are two ways to generateX D x
(using the convention that x is a possible value of the random variable X ). One
way is to propose � D x and then take the C choice in (2.5). The other way is to
propose � D �x and then take the � choice. The probability density for � D x

is �.x/. The density for �� is �.��/ D �.�/. The probability to get x if x was
proposed is

pC.x/ D
w.x/

w.x/C w.�x/
:

The probability to get x if �x was proposed is the same, since

p�.�x/ D
w�.�x/

wC.�x/C w�.�x/
D

w.�.�x//

w.�x/C w.�.�x//
D pC.x/:

Therefore, the pdf of X is

qs.x/ D �.x/pC.x/C �.�x/p�.�x/

D �.x/
2w.x/

w.x/C w.�x/
:(2.6)

Moreover, if �.x/ is a normalized probability density, then qs is also normal-
ized. This can be seen by using the right side of (2.6)Z

qs.x/dx D
1

2

Z
.qs.x/C qs.�x//dx

D
1

2

Z
2�.x/

w.x/C w.�x/
.w.x/C w.�x//dx

D 1:

The weight function (2.1) for the symmetrized method is thus

(2.7) ws.x/ /
p.x/

qs.x/
/

�.x/w.x/

�.x/ 2w.x/
w.x/Cw.�x/

D
w.x/C w.�x/

2
:

The simple linear map sampler and the symmetrized sampler have different
symmetries. The simple sampler has a symmetric proposal density and nonsym-
metric weight. The symmetrized sampler has a nonsymmetric proposal density,
qs.x/ ¤ qs.�x/, but a symmetric weight function. Intuitively one can therefore
expect that the quality measure of the symmetrized method is better because a
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symmetric weight function is “more nearly constant” for small x, particularly in
the small noise regime described below.

2.2 Simple and Symmetrized Random Map Methods
The simple (as opposed to symmetrized) random map method is described in

[23]. We review the method here for notation and completeness.
One first samples � � � , and then chooses

(2.8) X D �.�/�:

The stretch factor �.�/ � 0 is defined implicitly via

(2.9) F.�.�/�/ D
1

2
�TH�:

The random map algorithm gets its name from the map � 7! X: To ensure the
correctness of the algorithm, we need to assume that equation (2.9) has a unique
solution � > 0 for every � ¤ 0: This will be the case if, e.g., every level set (except
the zero level set) of F is “star-shaped”; i.e., for every c > 0; every straight line
through 0 intersects the level set F�1.c/ transversely at exactly two points.

To determine the weight function of the random map method, note that if � � �
and X D x.�/, then X has probability density

q.x.�// D �.�/

ˇ̌̌̌
det

�
@�

@x

�ˇ̌̌̌
;

so that we find the weight w from (2.1) to be

w.�/ D

ˇ̌̌̌
det
�
@x

@�

�ˇ̌̌̌
;

choosing the arbitrary implicit constant to be equal to 1 here.
The Jacobian determinant is

(2.10) w.�/ D �.�/d�1
�TH�

j�TrxF.�.�/�/j
:

To see this, note that the Jacobian matrix is obtained by differentiating (2.8),

@x

@�
D �Œr�.�/�T C �.�/I;

where r� is the column vector with entries @�j�.�/. The determinant identity

det.�I C A/ D �d C �d�1 tr.A/C � � �

gives

det
�
@x

@�

�
D �d C �d�1�T

r�;
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where the terms of order �d�2 and lower vanish because � Œr�.�/�T is a matrix of
rank 1. A calculation (given just below) gives

(2.11) �T
r�� D �

�
�TH�

xTrxF
� 1

�
;

which immediately leads to (2.10). To verify (2.11), we differentiate (2.9) with
respect to �i : X

j

@xj
F.�.�/�/ @�i

Œ�.�/�j � D .H�/i ;

X
j

@xj
F.�.�/�/

�
@�.�/

@�i
�j C �.�/ıij

�
D .H�/i :

We multiply by �i , sum over i , and use the relations �.�/� D x and � D 1
�.�/

x:

�T
rxF.�.�/�/ �

T
r��.�/C �.�/�

T
rxF.�.�/�/ D �

TH�;

1

�.�/
xT
rxF.�.�/�/ �

T
r��.�/C x

T
rxF.�.�/�/ D �

TH�:

Solving for �Trx�.�/ gives (2.11).
Our symmetrization of the simple random map method is a natural adaptation

of the symmetrization of the simple linear map method. There are three steps:
(1) Generate a sample � � � .
(2) Compute xC D �.�/ � � and x� D �.��/ � .��/, each using (2.9).
(3) Use x D xC with probability pC.�/ WD w.�/=.w.�/Cw.��//. Otherwise

use x�.
The arguments leading to (2.6) and (2.7) apply here too. The probability density
of X produced by the symmetrized random map method is thus

qs.x/ D
2

w.�.x//C w.��.x//
e�F.x/;

where w.�/ is the weight of the simple random map method. The weight function
for the symmetrized random map method is

(2.12) ws.�/ D
w.�/C w.��/

2
;

where w is the weight of the simple method (2.10).

2.3 Summary of Small Noise Theory
We summarize the small noise problem and state our main results, which we

establish in detail in Sections 4 and 5. The small noise problem concerns the scaled
density

(2.13) p.x/ / f .x/ D e�F.x/=":
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Recursive particle filter applications often call for proposal distributions roughly of
the form (2.13). When the noise parameter " is small, most of the probability in p
is near the point of maximum probability, which we continue to take to be x� D 0.
Therefore F.x/ � 1

2
xTHx (see (2.3)) may be a useful approximation.

We state and derive the small noise theory using a standard scaling,

zx D "1=2x:

This scales the terms in the Taylor expansion (2.3) as

F.zx/

"
D
1

2
zxTH zx C "1=2C3.zx/C "C4.zx/

C "3=2C5.zx/C "
2C6.zx/CO."

5=2/:

(2.14)

The target density therefore satisfies

(2.15) p.zx/ / exp
�
�zxTH zx=2 � "1=2C3.zx/ � "C4.zx/ �O."

3=2/
�
:

For the rest of the theory, we assume p satisfies (2.15). Following common prac-
tice, we drop the tilde.

Our theoretical results take the form of asymptotic approximations ofQ defined
in (2.2). The simple linear map and random map methods have the scaling

Q D "ACO."3=2/:

The error constants are

A D E�.C3.X/
2/ (simple linear map),(2.16)

A D
.1C d/2

.2C d/.4C d/
E�.C3.X/

2/ (simple random map).(2.17)

The error scaling for the symmetrized methods is

Q D "2B CO."5=2/;

with error constants of the form

B D var�

�
C4 �

1

2
C 23

�
(symmetrized linear map),(2.18)

B D var�

�
C4 �

1

2
C 23

�
C cd �K (symmetrized random map).(2.19)

Here cd D O.1=d/, andK is a possibly dimension-dependent constant depending
on F . The exact form is given in Section 5.2.

We have the following conclusions. For both methods,Q! 0 in the small noise
limit "! 0. This is perhaps not surprising because the Gaussian approximation �
becomes exact in this limit. On the other hand, this property cannot be taken for
granted in general; see, e.g., [28].

The simple linear and random map methods have the same order as "! 0, and
the symmetrized methods have a higher order. Thus, for any fixed problem and
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for sufficiently small ", the error constants of the symmetrized methods are signifi-
cantly smaller than the error constants for the corresponding simpler methods. The
ratio of the error constants for the linear and random map methods depends only
on the dimension. This factor converges to 1 as d !1. Thus, in the limits "! 0

and d ! 1, the random map methods lose their advantages over the linear map
methods.

3 Analysis Tools
Here we describe three tools that we will use in the analysis of the linear and

random map methods. This section can be skipped on a first reading.

3.1 The Variance Lemma
The variance lemma is a simple way to understand some cancellations that occur

in computing Q for small ". It applies to functions u.x; "/ of the form

u.x; "/ D 1C "ru1.x/C "
2ru2.x/CO."

3r/:

It states that if

(3.1) Q D
E.u.X; "/2/

E.u.X; "//2
� 1;

then

(3.2) Q D "2r var.u1.X//CO."3r/:

The variance formula (3.2) does not depend on the distribution of X , except that
the same distribution must be used throughout. Expectations involving u2 appear
in the numerator and denominator of (3.1) at orderO."2r/, but they cancel to order
O."2r/ in the ratio. The verification is straightforward. The numerator in (3.2) is

E.u.X; "/2/ D E
�
1C 2"ru1 C "

2r
�
u21 C 2u2

�
CO."3r/

�
D 1C 2"rE.u1/C "

2r
�
E
�
u21
�
C 2E.u2/

�
CO."3r/:

The denominator is

E.u.X; "//2 D
�
1C "rE.u1/C "

2rE.u2/C o."
2r/
�2

D 1C 2"rE.u1/C "
2r
�
E.u1/

2
C 2E.u2/

�
CO."3r/:

Therefore,

Q D
1C 2"rE.u1/C "

2r.E.u21/C 2E.u2//CO."
3r/

1C 2"rE.u1/C "2r.E.u1/2 C 2E.u2//CO."3r/
� 1

D
�
1C 2"rE.u1/C "

2r
�
E
�
u21
�
C 2E.u2/

�
CO."3r/

�
�
�
1 � 2"rE.u1/C "

2r
�
3E.u1/

2
� 2E.u2/

�
CO."3r/

�
� 1

D "2r
�
E
�
u21
�
�E.u1/

2
�
CO."3r/:
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Note that this conclusion depends on the existence of a function u2.x/, but it does
not depend on what u2 is.

3.2 Evaluating Rational Gaussian Expectations
The random map analysis in Section 5 leads to Gaussian expectations of the

form

E�

�
C.�/

j�j2r

�
;

where C.�/ is a homogeneous polynomial of some degree. These are related to
expectations of C.�/. In fact, if f .�/ is homogeneous of degree q, then

(3.3) .q C d/E�f .�// D E�.j�j
2f .�//:

Taking C.�/ of degree p and f .�/ D C.�/=j�j2 or taking f .�/ D C.�/=j�j4 gives
q D p � 2 or q D p � 4, and

E�

�
C.�/

j�j2

�
D

1

p � 2C d
E�.C.�//

or (iterating twice)

(3.4) E�

�
C.�/

j�j4

�
D

1

.p � 4C d/.p � 2C d/
E�.C.�//:

This result, which may be derived as a �-function identity, is surely not new.
We give an elementary derivation that uses the function

I.r/ D

Z
f .r�/e�j�j

2=2 d�:

On one hand,

I.r/ D rq
Z
f .�/e�j�j

2=2 d� D rqI.1/:

On the other hand, we can change variables with r� D � to get

I.r/ D

Z
f .�/e�j�j

2=.2r2/ 1

rd
d�:

Now differentiate with respect to r and set r D 1:

qrq�1I.1/ D I 0.r/ D
1

r3

Z
f .�/j�j2e�j�j

2=.2r2/ d�

rd

� d

Z
f .�/j�j2e�j�j

2=.2r2/ d�

rdC1
;

qI.1/ D

Z
f .�/j�j2e�j�j

2=2 d� � dI.1/;

.q C d/

Z
f .�/e�j�j

2=2 d� D

Z
j�j2f .�/e�j�j

2=2 d�:

This is the desired (3.3).
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3.3 Wick’s Formula
The general analysis leads to quantities such as E�.C 23 /. Wick’s formula [17]

can be used in this context to derive specific formulas.
Recall that the distribution of a mean zero multivariate Gaussian is completely

determined by its covariance matrix. Therefore, the expected value of a higher-
order monomial is a function of the covariances. Wick’s formula (3.3) is this func-
tion. Of course, the expected value of an odd order monomial is 0; Wick’s formula
gives the even-order moments.

The general version of Wick’s formula is as follows (see, e.g., [17]). Suppose
X D .X1; : : : ; Xd / 2 Rd is a multivariate mean zero Gaussian with covariances
Cij D E�.XiXj /. Let ik , for k D 1; : : : ; 2n, be a list of indices with repeats
allowed. Let M D Xi1 � � �Xi2n

be the corresponding degree 2n monomial. A
pairing is a partition of f1; : : : ; 2ng into n sets of size 2

P D ffk1; l1g; : : : ; fkn; lngg:

A pairing has the property that

f1; : : : ; 2ng D

n[
rD1

fkr ; lrg:

The set of all pairings is P . The number of pairings is

jPj D .2n � 1/.2n � 3/ � � � 3 D .2n � 1/ŠŠ:

There are no pairings of a set with an odd number of elements. Wick’s formula
gives the expected value of a monomial of even degree as a sum over all pairings
of the indices:

E�

� 2nY
kD1

Xik

�
D

X
P2P

nY
rD1

E�.Xikr
Xilr

/ D
X
P2P

nY
kD1

Cikr ;ilr
:

As an example, for d D 1 and 2n D 6, X � N .0; �2/, there are 5 � 3 D 15

pairings, so

(3.5) E.X6/ D 15.�2/3 D 15�6:

We illustrate the use of Wick’s formula by evaluating the error constant (2.16).
We use the simplified notation Fijk D @xi

@xj
@xk

F.0/ and write

C3 D
1

6

X
ijk

Fijkxixjxk

and

C 23 D
1

36

X
ijklmn

FijkFlmnxixjxkxlxmxn:

There are two kinds of pairings. One kind pairs one of the indices fi; j; kg with
another of the fi; j; kg. This forces one of the fl; m; ng to be paired with another,
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and the unpaired index from fi; j; kg to be paired with the unpaired index from
fl; m; ng. An example of this kind of pairing is

P D ffi; kg; fj; ng; fl; mgg:

There are nine such pairings, since the unpaired index from each triple is arbitrary.
The expectations are all equal because Fijk is a symmetric function of its indices.

The other kind of pairing has each of the fi; j; kg paired with one of the fl; m; ng.
An example of this kind of pairing is

P D ffi; mg; fj; ng; fk; lgg:

There are six such pairings, since i is paired with one of the three fl; m;mg, then j
with one of the remaining two, then k with the last one. The expectations are again
equal. Altogether

E�.C
2
3 / D

1

36

X
ijklmn

FijkFlmn.9CijCklCmn C 6CilCjmCkn/:

This formula simplifies in the case of an isotropic Hessian H D I (i.e., Cjk D
ıjk). In that case, the CijCklCmn terms vanish unless i D j , k D l , and m D n.
The CijCklCmn terms giveX

ikm

Fi ikFmmk D kr 4 F.0/k
2
`2 :

(For any tensor A, we denote the euclidean 2-norm of all its entries by kAk`2

regardless of the rank of A:) The CilCjmCkn terms giveX
ijk

F 2ijk D kD
3F.0/k2

`2 :

Taken together, these give

E�
�
C 23
�
D
1

4
kr 4 F.0/k2

`2 C
1

6
kD3F.0/k2

`2 :

The compact expressions on the right represent the two distinct ways a quadratic
function of the Fijk can be rotationally invariant.

4 Analysis of Linear Map Methods
This section contains the calculations behind the results (2.16) and (2.18). We

estimate the expectations required for Q (see (2.2)) using the Laplace asymptotic
expansion method; see, e.g., [24]. The calculations are easy to justify if F has a
unique global minimum and F !1 rapidly enough as jxj ! 1.
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4.1 Laplace Asymptotics for the Simple Linear Map
We wish to calculate the expected value of the weight and the expected value

of the square of the weight for the linear map method in (2.4). We use the Taylor
expansion of F in (2.14) to obtain a Taylor expansion of the weight

w.x/ D e�"
1=2C3.x/�"C4.x/CO."

3=2/

D 1 �
�
"1=2C3.x/C "C4.x/

�
C
1

2

�
"1=2C3.x/

�2
CO."3=2/

D 1 � "1=2C3.x/C "

�
1

2
C3.x/

2
� C4.x/

�
CO."3=2/:(4.1)

Recall that C3.x/ is an odd function of x and �.x/ is symmetric. Therefore
E�.C3/ D 0, so E�.C 23 / D var�.C3/ and the variance lemma (3.1) with r D 1

2
gives

Q D " var�.C3/CO."3=2/ D "E�.C 23 /CO."
3=2/:

This is the desired result (2.16).

4.2 Laplace Asymptotics for the Symmetrized Linear Map
We obtain the Taylor expansion of the weight of the symmetrized linear map

method from (2.7) and from the expansion of the weight of the simple linear
map method in (4.1). We note that the term that is antisymmetric in x, which
is C3.�x/ D �C3.x/, cancels, so that

(4.2) ws.x/ � 1C "

�
1

2
C 23 � C4.x/

�
:

To apply the variance lemma, we first show that

Q D
Eqs

.ws.X/
2/

Eqs
.ws.X//2

� 1 D
E�.ws.�/

2/

E�.ws.�//2
� 1:

This shows that we can average over � instead of X when computing the quality
measure Q. To see why, note that (2.6) implies that for any function u,

Eqs
.u.X// D E�

�
2w.�/

w.�/C w.��/
u.�/

�
:

Together with (2.7), this implies that

Eqs
.ws.X// D E�

�
2w.�/

w.�/C w.��/
ws.�/

�
D E�

�
2w.�/

w.�/C w.��/

w.�/C w.��/

2

�
D E�.w.�//:
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The last equality follows from the symmetry of � . Similar algebra and symmetry
reasoning leads to

Eqs
.ws.X/

2/ D E�

 
2w.�/

w.�/C w.��/

�
w.�/C w.��/

2

�2!

D E�

�
w.�/

w.�/C w.��/

2

�
D E�.ws.�/

2/:

Applying the variance lemma to the above expression, with expectations over �,
and using (4.2) leads to the error term (2.18).

5 Analysis of Random Map Methods
We analyze the simple and symmetrized random map algorithms in the small

noise limit "! 0. For the analysis, we use the fact that the random map sampler is
affine invariant. This means that if M is an invertible d � d matrix and y D Mx,
then the behavior of the random map sampler is identical when applied to F.x/ or
to G.x/ D F.Mx/. Since H is nondegenerate, it is possible to choose M so that
the Hessian of G is the identity. Without loss of generality, we put H D I in our
analysis of random map samplers. See [13] for a discussion of the value of affine
invariance in practical Monte Carlo.

5.1 Simple Random Map
It is easy to determine the leading powers of " in the expansions ofQ for random

map methods. The simple method hasw D 1CO."1=2/, which the variance lemma
(3.2) turns intoQ D O."/. The symmetrized method (2.12) symmetrizesw, which
eliminates the O."1=2/ term, leaving ws D O."/ and Q D O."2/. It takes a more
detailed calculation to find the error constants (2.17) and (2.19).

It is clear that with our assumptionsw has an asymptotic expansion in powers of
"1=2 as required by the variance lemma. For the error constant of the symmetrized
method, we need explicit expressions up to O."/. We calculate the expansions of
the quantities that enter into w, then combine them. We write a.�; "/ � b.�; "/ if
a and b agree up to order ".

With our normalization H D I , we obtain from (2.14)

F.x/ �
1

2
jxj2 C "1=2C3.x/C "C4.x/:

To find an expansion for �, we substitute the ansatz

(5.1) �.�/ � 1C "1=2�1.�/C "�2.�/
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into (2.9). We find that
1

2
j�j2 �

1

2
�2.�/j�j2 C "1=2�.�/3C3.�/C "�.�/

4C4.�/

�
1

2
j�j2 C "1=2�1j�j

2
C "

�
1

2
�21 C �2

�
j�j2

C "1=2Œ1C 3"1=2�1�C3.�/C "C4.�/:

Collecting terms of O."1=2/ gives

0 D �1.�/j�j
2
C C3.�/;

which can be rearranged to

�1.�/ D
�C3.�/

j�j2
:

The O."/ equation is

0 D

�
1

2
�1.�/

2
C �2.�/

�
j�j2 C 3�1.�/C3.�/C C4.�/:

Solving for �2 yields

�2.�/ D
5

2

C3.�/
2

j�j4
�
C4.�/

j�j2
:

We now expand the weights (2.10). For the denominator, we compute the gra-
dient of F :

rF.�/ � � C "1=2rC3.�/C "rC4.�/:

Since C3.�/ is homogeneous of degree 3, we have rC3.��/ D �2rC3.�/, and
Euler’s identity gives �TrC3.�/ D 3C3.�/. Therefore,

�T
rF.�.�/�/ � �.�/j�j2 C "1=2�.�/2�T

rC3.�/C "�
T
rC4.�/

� j�j2 C "1=2Œ�1.�/j�j
2
C 3C3.�/�

C "
�
�2.�/j�j

2
C 6�1.�/C3.�/C 4C4.�/

�
� j�j2 C "1=22C3.�/C "

�
3C4.�/ �

7

2

C3.�/
2

j�j2

�
:(5.2)

For the numerator in (2.10), use the identity

.1C ˛/d�1 D 1C .d � 1/˛ C
1

2
.d � 1/.d � 2/˛2 CO.˛3/

to obtain

�d�1 � .1C "1=2�1 C "�2/
d�1

� 1C "1=2.d � 1/�1 C "
�
.d � 1/�2 C

1
2
.d � 1/.d � 2/�21

�
� 1C "1=2

.1 � d/C3.�/

j�j2
C ".d � 1/

�
d C 3

2

C2.�/
2

j�j4
�
C4.�/

j�j2

�
:(5.3)
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We use (5.3) and (5.2) to evaluate w to order ":

w.�/ �

n
1C "1=2 .1�d/C3.�/

j�j2
C ".d � 1/

h
dC3
2

C2.�/
2

j�j4
�
C4.�/

j�j2

io
j�j2

j�j2 C "1=22C3.�/C "
h
3C4.�/ �

7
2
C3.�/2

j�j2

i :

This has the form

(5.4) w �
1C "1=2aC "b

1C "1=2c C "d
� 1C "1=2.a � c/C ".c2 � d � ac C b/

with coefficients

a D
.1 � d/C3.�/

j�j2
; b D .d � 1/

�
d C 3

2

C3.�/
2

j�j4
�
C4.�/

j�j2

�
;

c D
2C3.�/

j�j2
; d D

3C4.�/

j�j2
�
7

2

C3.�/
2

j�j4
:

The term of order "1=2 in (5.4) is

(5.5) a � c D �.d C 1/
C 23 .�/

j�j2
:

This suffices for the error constant for the simple random map method. The
variance lemma formula (3.2), together with (5.5), gives

Q � ".d C 1/2E�

�
C3.�/

2

j�j4

�
:

The expected value can be evaluated using the Gaussian integral identity (3.4).
Since C 23 .�/ is degree p D 6, we have

Q � "
.d C 1/2

.d C 2/.d C 4/
E�.C3.�/

2/:

This is the desired result (2.17).

5.2 Symmetrized Random Map
The analysis of the symmetrized random map requires the O."/ term in the w-

expansion (5.4). The result is

.d C 2/.d C 4/

2

C3.�/
2

j�j4
� .d C 2/

C4.�/

j�j2
:

The w symmetrization formula (2.12) then gives

ws.�/ � 1C "

�
.d C 2/.d C 4/

2

C3.�/
2

j�j4
� .d C 2/

C4.�/

j�j2

�
:

The variance lemma (3.2) then implies that

Q D "2 var�

�
.d C 2/.d C 4/

2

C3.�/
2

j�j4
� .d C 2/

C4.�/

j�j2

�
:
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We now expand the above and rearrange the terms for direct comparison with the
result (2.18) for the symmetrized linear map:

Q D "2 var�

�
.d C 2/.d C 4/

2
�
C3.�/

2

j�j4

�
„ ƒ‚ …

I

� "2 cov�

�
.d C 2/.d C 4/

2
�
C3.�/

2

j�j4
; .d C 2/

C4.�/

j�j2

�
„ ƒ‚ …

II

C "2 var�

�
.d C 2/

C4.�/

j�j2

�
„ ƒ‚ …

III

:

Consider term I. We have

I D var�

�
.d C 2/.d C 4/

2

C3.�/
2

j�j4

�

D
.d C 2/2.d C 4/2

4
E�

�
C3.�/

4

j�j8

�
�

�
.d C 2/.d C 4/

2
E�

�
C3.�/

2

j�j4

��2
:

Using (3.4) and a direct generalization of it, we get

E�

�
C3.�/

2

j�j4

�
D

E�.C3.�/
2/

.d C 2/.d C 4/
;

E�

�
C3.�/

4

j�j8

�
D

E�.C3.�/
4/

.d C 4/.d C 6/.d C 8/.d C 10/
:

Thus,

I D
.d C 2/2.d C 4/2E�.C3.�/

4/

4.d C 4/.d C 6/.d C 8/.d C 10/
�

�
1

2
E�.C3.�/

2/

�2

D
1

4
var�

�
C3.�/

2
�
�
1

4
�

�
1 �

.d C 2/2.d C 4/2

.d C 4/.d C 6/.d C 8/.d C 10/

�
E�.C3.�/

4/:

Similarly, we have

II D
1

2
cov�.C3.�/2; C4.�// �

1

2
�

�
1 �

.d C 2/2.d C 4/

.d C 4/.d C 6/.d C 8/

�
E�.C3.�/

2C4.�//;

III D var�.C4.�// �
�
1 �

.d C 2/2

.d C 4/.d C 6/

�
E�
�
C4.�/

2
�
:
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When d is sufficiently large, we can rewrite the expressions for I–III in a more
concise way:

I D
1

4
var�.C3.�/2/ �

�
4

d
CO.1=d2/

�
E�.C3.�/

4/;

II D
1

2
cov�.C3.�/2; C4.�// �

�
5

d
CO.1=d2/

�
E�.C3.�/

2C4.�//;

III D var�.C4.�// �
�
6

d
CO.1=d2/

�
E�.C4.�/

2/:

This leads to

Q D "2
�

var�

�
1

2
C3.�/

2
� C4.�/

�
C cd �K

�
CO."3/;

where cd D O.1=d/ and K is a combination of moments of C3 and C4: This
verifies the stated result (2.19). We see that for d � 1; the variance of the sym-
metrized random map method approaches that of the symmetrized linear map. The
above also shows that in low dimensions, the variance of the symmetrized random
map may be smaller than that of the symmetrized linear map, though exactly how
much depends on the degree of correlation between C3.�/2 and C4.�/:

The error term of the symmetrized methods in (2.18) and (2.19) can in princi-
ple also be evaluated using Wick’s formula; however, the calculations are much
more involved. We illustrate how to use Wick’s formula for the error terms of the
symmetrized methods with an example.

6 Computational Experiments
We present computational experiments that confirm the theoretical error analysis

above for small " and suggest what may happen when " is not so small. We use two
test problems. One is a nonlinear random walk whose dimension is arbitrary. This
allows us to see how the samplers’ performance depends on the dimension. We see
that the samplers perform worse in higher dimension, but they are still quite useful
in dimensions of practical interest. In the other example we apply the algorithms
to a data assimilation problem with the “Lorenz ’63” model [20]. The goal is to
sample the posterior distribution of the initial conditions in the presence of noisy
observations of the state at later time.

6.1 Nonlinear Random Walk
Consider a non-Gaussian random walk tied at the start and free at the end. The

random variable is X D .X1; : : : ; XN /, with X0 � 0 implicitly. The Gaussian
random walk potential is

(6.1) xTHx D

N�1X
kD0

.xkC1 � xk/
2
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where x0 D 0. We make the walk non-Gaussian by adding cubic and quartic terms
to the potential energy. The nonlinear parts are discretizations of a nonlinear energy
functional:

C3.x/ D ˛

N�1X
kD0

.xkC1 � xk/
3 and C4.x/ D ˇ

N�1X
kD0

.xkC1 � xk/
4:

The coefficients ˛ and ˇ would be called “coupling constants” in field theory, and
both are set to 1 in our numerical experiments below. In the Gaussian measure de-
termined by (6.1), the increments .XkC1 �Xk/ are independent standard normal
random variables. We can use this to calculate

E�.C3.X/
2/ D ˛2

X
jk

E�
�
.XjC1 �Xj /

3.XkC1 �Xk/
3
�
:

The terms on the right-hand side with j ¤ k vanish because the increments are
independent. The terms with j D k satisfy, using Wick’s formula (3.5),

E�
�
.XkC1 �Xk/

6
�
D EN .0;1/.Z

6/ D 15;

so
E�.C3.x/

2/ D 15˛2N:

Thus, the simple linear method for this problem has the quality measure (see (2.16))

(6.2) Q � "15˛2N:

The simple random map quality measure (2.17) is slightly less:

(6.3) Q � "15˛2
N.N C 1/2

.N C 2/.N C 4/
:

It is tedious but straightforward to calculate the error constant for the sym-
metrized methods. We need

var�

�
C4 �

1

2
C 23

�
D E�

��
C4 �

1

2
C 23

�2�
�

�
E�

�
C4 �

1

2
C 23

��2
:

The first part is

E�

��
C4 �

1

2
C 23

�2�
D E�.C

2
4 / �E�.C4C

2
3 /C

1

4
E�.C

4
3 /:

We evaluate these three using Wick identities; first,

E�
�
C 24
�
D ˇ2

X
jk

EN .0;1/
�
.XjC1 �Xj /

4.XkC1 �Xk/
4
�

D ˇ2
�X
j¤k

E
�
.XjC1 �Xj /

4.XkC1 �Xk/
4
�

C

X
jDk

E
�
.XjC1 �Xj /

4.XkC1 �Xk/
4
��
D
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D ˇ2
�
.N 2
�N/E

�
.X2 �X1/

4.X3 �X2/
4
�
CNE

�
.X2 �X1/

8
��

D 3 � 3ˇ2N 2
CO.N/:

We write numbers in factored form, as in 3 � 3 instead of 9, for clarity.
The second term is

E�
�
C4C

2
3

�
D ˛2ˇ

X
jkl

EN .0;1/
�
.XjC1 �Xj /

4.XkC1 �Xk/
3.XlC1 �Xl/

3
�

D ˛2ˇ

� X
j¤.kDl/

E
�
.XjC1 �Xj /

4.XkC1 �Xk/
3.XlC1 �Xl/

3
�

C

X
jDkDl

E
�
.XjC1 �Xj /

4.XkC1 �Xk/
3.XlC1 �Xl/

3
��

D ˛2ˇ
�
.N 2
�N/E

�
.X2 �X1/

4.X3 �X2/
6
�
CNE

�
.X2 �X1/

10
��

D 3 � 5 � 3˛2ˇN 2
CO.N/:

The factor of 3 in the third term is for the three possibilities .j D k/ ¤ .l D m/,
and .j D l/ ¤ .k D m/, and .j D m/ ¤ .k D l/:

E�
�
C 43
�
D ˛4

X
jklm

E
�
.XjC1 �Xj /

3.XkC1 �Xk/
3

� .XlC1 �Xl/
3.XmC1 �Xm/

3
�

D ˛4
�
3

X
.jDk/¤.lDm/

E
�
.XjC1 �Xj /

3.XkC1 �Xk/
3

� .XlC1 �Xl/
3.XmC1 �Xm/

3
�

C

X
jDkDlDm

E
�
.XjC1 �Xj /

3.XkC1 �Xk/
3

� .XlC1 �Xl/
3.XmC1 �Xm/

3
��

D ˛4
�
3.N 2

�N/E
�
.X2 �X1/

6.X3 �X2/
6
�

CNE
�
.X2 �X1/

12
��

E�
�
C 43
�
D 3 � .5 � 3/2˛4N 2

CO.N/:(6.4)
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Adding these gives

E�

��
C4 �

1

2
C 23

�2�
D

N 2

�
ˇ2 � 32 � ˛2ˇ � 3 � 5 � 3C

1

4
˛4 � 3 � .5 � 3/2

�
CO.N/:

A simpler calculation shows that E�.C4 � 1
2
C 23 / D O.N/. Subtracting the terms

finally gives

var�

�
C4 �

1

2
C 23

�
D
1

4
˛4N 2

� 2 � .5 � 3/2 CO.N/ D
225˛4N 2

2
CO.N/:

It is now clear that the simple methods have error coefficients proportional to "N ,
and the symmetrized methods have error coefficients proportional to ."N /2.

We perform numerical experiments and vary N and ". In these experiments,
we approximate the expected values in the quality measure Q by averages over
104 samples. We protect the computations against over- and underflow as follows.
Instead of saving the weight, we save the logarithm of the weight of each sample.
This is straightforward for the linear map. For the symmetrized linear map, we use

wSLM.x/ / wLM.x/C wLM.�x/

D wLM.x/

�
1C

wLM.�x/

wLM.x/

�
;

where wLM is the weight of the simple linear map and wSLM that of the sym-
metrized linear map. We then compute

logwSLM.x/ D log.wLM.x//C log
�
1C

wLM.�x/

wLM.x/

�
D log.wLM.x//C log.1C exp.F.x/ � F.�x///:

For the random map we save the log of the weight

logwRM.x/ D .d � 1/ log.j�.x/j/C log.�TH�/ � log
�
�T
rxF.�.x/�/

�
:

For the symmetrized random map, the log of the weight is

logwSRM.x/ D log.wRM.x//

C log
�
1C

�
�.�x/

�.x/

�d�1 �TrxF.��.�x/�/

�TrxF.�.x/�/

�
:

Once we have computed the logarithms of the weights for each sample, we sub-
tract the maximum value of the logarithms of the weights, then exponentiate, then
normalize.

The left panel of Figure 6.1 shows Q as a function of " for N D 2, and the
right panel for N D 200. The dots, circles, squares, and diamonds are values of Q
computed from the samples, the lines have slope 1 or 2, and are there to illustrate
the “order” of the method. Specifically, the turquoise line is as in (6.2), the red



22 J. GOODMAN, K. L. LIN, AND M. MORZFELD

10
−5

10
0

10
−15

10
−10

10
−5

10
0

ε

Q

 

 

LM

SLM

RM

SRM

10
−5

10
0

10
−10

10
−5

10
0

ε

Q

 

 

LM

SLM

RM

SRM

FIGURE 6.1. Sampling nonlinear random walks. Left: N D 2. Right:
N D 200. Turquoise squares: linear map (LM). Blue diamonds: sym-
metrized linear map (SLM). Red dots: random map. Purple circles:
symmetrized random map. The turquoise and red lines have slope 1;
the purple and blue lines have slope 2. The turquoise line is as in (6.2),
the red line as in (6.3), and the purple line on the left is as in (6.4).

line as in (6.3), and the purple line on the left is as in (6.4). The numerical results
confirm our asymptotic expansions for sufficiently small ". We have made similar
observations for other values of N � 1000. Specifically, for N D 2, we observe
that the numerical results agree with the predicted values for relatively large " (up
to " � 0:01). For " � 10�3, the linear map method, the random map method, and
the symmetrized linear map method are similarly good (as measured by Q). All
four methods are doing equally well when " becomes even larger. Moreover, all
four methods can be useful in this problem, in the sense that Q is “not too large,”
even when " is close to 1.

We observe in the numerical experiments with N D 200 that the random map
loses its advantage over the linear map when N becomes large. This is true for the
simple and symmetrized versions of these methods. We observe that the results of
our experiments agree with our predictions for " � 10�3. For larger ", all methods
perform poorly and yield a large Q� 1 for " � 10�3.

Figure 6.2 illustrates the scaling of Q with N as computed by Wick’s formula.
Shown isQ as a function ofN for the various methods. As predicted by the theory,
we observe that the symmetrized methods have leading error terms proportional to
."N /2, and that the simple, unsymmetrized methods have error terms proportional
to "N .

6.2 Lorenz ’63
We consider estimating the initial conditions of the Lorenz ’63 [20] equations

dx

dt
D �.y � x/;

dy

dt
D x.� � ´/ � y;

d´

dt
D xy � ˇ´;

where � D 10, ˇ D 8=3, and � D 28, from noisy measurements of x, y, and ´ at
time T :

d D .x.T /; y.T /; ´.T //T C v:
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FIGURE 6.2. Scaling of Q with N . Turquoise squares: linear map
(LM). Blue diamonds: symmetrized linear map (SLM). Red dots: ran-
dom map (RM). Purple circles: symmetrized random map (SRM). The
turquoise line has slope 1; the blue line has slope 2.

The Gaussian random variable v � N .0; "I3/ models measurement noise. The
above ordinary differential equations (ODE) are solved with MATLAB® routine
ode45. The prior for the initial conditions is Gaussian with arbitrarily chosen
mean

�0 D .3:6314; 6:6136; 10:6044/
T

and covariance P0 D "I3. The conditional random variable x0 j d thus has the pdf
p.x0 j d/ D exp.�F.x0/="/, where

F.x0/ D
1

2

�
.d � h.x0//

T.d � h.x0//C .�0 � x0/
T.�0 � x0/

�
;

so that this problem corresponds to a “small noise” situation. Here x0 is shorthand
notation for the vector .x.0/; y.0/; ´.0//T, and h.x0/ is the ode45 solution of the
ODEs at time T . The initial conditions we use to generate the synthetic data for
our numerical experiments are

x0;true D �0 C 0:5
�p
";�
p
";
p
"
�T
:

We generate samples of x0 j d using the linear and random map methods
described above and vary " and T . The minimization required by the sampling
schemes is done with a quasi-Newton method where all derivatives are approxi-
mated with finite differences. Similarly, we approximate the Hessian at the mini-
mum via finite differences.

We first fix " D 1 and vary T , i.e., the time when data are collected. As T
becomes larger, the problem becomes more and more difficult and multiple modes
can appear [21, 22]. Figure 6.3 shows Q as a function of T . We observe that the
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FIGURE 6.3. Estimating initial conditions of the Lorenz ’63 equations.
The parameter " D 1 is constant and the time T at which data are col-
lected is varied. Turquoise squares: linear map (LM). Blue diamonds:
symmetrized linear map (SLM). Red dots: random map (RM). Purple
circles: symmetrized random map (SRM). The turquoise and red lines
have slope 4; the blue and purple lines have slope 6.

symmetrized methods perform better than the simple versions and give a signifi-
cantly smaller Q-value. For small T , the computed values of Q follow a straight
line with slope 4 for the random and linear maps and slope 6 for the symmetrized
methods. For T � 1, all four methods perform similarly well (the symmetrization
seems to lose its advantages) and for T > 1, the methods perform poorly. This is
perhaps because the pdf we attempt to sample becomes multimodal and therefore
is no longer star-shaped. However, we made no adjustments to address multimodal
target densities.

Next, we fix T D 0:05 and vary ". In this case, the pdf has the functional
form we analyze, and the scenario is analogous to the “small noise accurate data”
regime analyzed in the context of particle filtering in [28]. Figure 6.4 showsQ as a
function of ". As in the previous example, we find that our numerical experiments
confirm the predicted behavior, even if " is relatively large.

7 Conclusion and Discussion
We have performed a small-noise analysis of two implicit sampling methods, the

linear and random map methods. The analysis shows that the random map method
outperforms the linear map method in the small noise regime, but this advantage
becomes insignificant in high dimensions. The simplicity and relative speed of the
linear map method thus makes it more attractive in the limit of small noise. The
analysis further suggests that both methods may be improved by a symmetrization
procedure analogous to antithetic variates. We illustrate the theory with numerical



SMALL-NOISE ANALYSIS AND SYMMETRIZATION OF IMPLICIT SAMPLERS 25

10
−1

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

ε

Q

 

 

LM

SLM

RM

SRM

FIGURE 6.4. Estimating initial conditions of the Lorenz ’63 equations.
The data are collected at time T D 0:05 and the parameter " is var-
ied. Turquoise squares: linear map (LM). Blue diamonds: symmetrized
linear map (SLM). Red dots: random map (RM). Purple circles: sym-
metrized random map (SRM). The turquoise and red lines have slope 1;
the blue and purple lines have slope 2.

examples which also suggest that the symmetrized algorithms may outperform the
simple, unsymmetrized algorithms even when the noise is not so small.

We wish to emphasize two points that are important in practice. The first con-
cerns weighted direct samplers as used in particle filtering. Some methods pro-
posed for practical applications do not have Q ! 0 and may even have Q ! 1
as "! 0. For example, the “vanilla” bootstrap particle filter [14], which proposes
samples from a proposal distribution that does not take into account the most recent
observation, has Q ! 1 [27]. The present samplers all make proposals centered
about the MAP (maximum a posteriori) point, which takes into account the most
recent observation. There is much discussion in the literature of the advantages of
doing this [7, 11, 18, 25, 29].

Second, we wish to address the computational cost of the algorithms we analyze
and propose. In practice, the cost is roughly proportional to the number of eval-
uations of F and its derivatives. Even our Lorenz ‘63 example requires an ODE
solve to evaluate F . The rest of the algorithm is cheap by comparison.

All of our methods start with computing x� D arg minF.x/. This requires a
number of evaluations of F and possibly its derivatives (for numerical optimiza-
tion). We also need the Hessian of F , either by formulas, adjoints, or finite differ-
ences. The simple linear map method requires one more evaluation of F.X/ per
sample. The symmetrized linear map method requires two F evaluations. In parti-
cle filter applications, we may want just one sample. In that case, the optimization
is more expensive than sampling. Other applications may require many samples,
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in which case the cost is roughly the number of samples times the cost for one or
two F evaluations.

The simple random map must solve (2.8) once for each sample. This is one
equation in the single unknown �. It is normally solved with just a few F eval-
uations. As with the linear map methods, generating one sample using the sym-
metrized method requires roughly the work of two samples from the simple ver-
sion, though by exploiting the ansatz (5.1) for �; one can obtain a good initial guess
for finding �.��/ based on �.�/: This may speed up the symmetrized method.
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